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Comment on “Model kinetic equation for low-density granular flow”

A. Goldshtein and M. Shapifo
Laboratory of Transport Processes in Porous Materials, Faculty of Mechanical Engineering, Technion-Israel Institute of Technology,
Haifa 32000, Israel
(Received 2 December 1996

Hydrodynamic equations for a system of inelastically colliding granules were systematically derived on the
basis of the Boltzmann equation by the Chapman-Enskog method.Goldshtein, V. N. Poturaev, and I. A.
Shulyak, Fluid Dyn (USSR 25, 305(1990; A. Goldshtein and M. Shapiro, J. Fluid Mec?82 75 (1995].

We feel that this problem has recently been incorrectly treated by J. J. Brey, F. Moreno, and James W. Dufty
[Phys. Rev. B54, 445(1996)] using the Bhatnagar-Gross-Krook approximation of the kinetic equation. In this
Comment, the inconsistency of their approach is analyzed, and possible adequate methods for stability analyses
of the homogeneous state of inelastic granules are delind&#863-651X98)10804-9

PACS numbd(s): 05.20.Dd

n a recent papefl] Brey, Moreno, and Duffy used a lar gas composed of rough particles is characterized by an
variant of Bhatnagar-Gross-KrookBGK) kinetic model additional sink and energy loss terms arising from the gas
equation to investigate the time evolution of a low-densitycompressior(or expansion
granular gas composed of inelastically colliding particles. In particular, our analyses of the homogeneous hydrody-
The kinetic equation was solved by a modification of thenamic state of inelastic smooth granules, performed on the
Chapman-Enskog method by expanding about a local homdsasis of the Boltzmann-Enskog kinetic equation, shojd
geneous state in powers of gradients of the hydrodynamithat the granular velocity distribution functiondtose to the
properties. The velocity distribution function describing the Maxwellian This basically opposes the results obtained by
hydrodynamics of the homogeneous state was found to dérey, Moreno, and Duffy1]. The first nontrivial coefficient
cay as a power function for large velocities, which is inin the expansion of the velocity distribution function in series
contrast with the Maxwellian distribution prevailing for mo- of Sonine polynomials is smdlk 0.04 (see Ref[3])] for all
lecular fluids. As a consequence of this algebraic decay, the. This coefficient produces the fourth order velocity mo-
velocity moments of degrele=2/(1—e?), with e being the  ment, which does not exist according to the study of REf.
restitution coefficient, diverge. Furthermore, the energy balfor e2<%. The latter contradiction is clearly attributed to the
ance equation was found to contain, in addition to a sinkapparent deficiency of their variant of the BGK equation. It
term describing the energy loss in collisions, a contributioncontains the two unknown quantities: collisional frequeticy
to the heat flux, which is proportional to the gradient of theand a functiorf,, determining a reference state. These quan-
granular gas number density. tities appear in the linearized collisional term, and no ratio-

Part of the above results were obtained eafl8] for a  nale exist for choosing them during the solution.
more elaborate collisional model, a wider range of granular For conservativemoleculay gases choice of the colli-
gas density and a more general kinetic equation of theional term in the BGK kinetic equation is dictated by the
Boltzmann-Enskog type. This equation, derived for a systenfiollowing principles:(i) molecules tend to reach the equilib-
of inelastic rough spheres, was treated by the Chapmamium state, which is characterized by the Maxwell-
Enskog method to derive the pertinent hydrodynamic equaBoltzmann distributior{4], and (i) the information entropy
tions. As a result, the sink terms were calculated and théends to a maximum valyg]. The above principles, used in
additional terms contributing to the heat flux were revealedRef.[1] are generally not valid for a gas composed of inelas-
which are proportional to grad im and grad IMAP, with n tic (e<1) particles due to the nonconservative nature of
and AP being the particle number density and gas pressursuch granular system§) There is no equilibrium state for
correction due to collisional momentum transfer in densegranular systems; that is, the distribution function always
gases, respectively. We also shoW2¢B| that a dense granu- remainst-dependent and so doég. Even in the hydrody-

namic stage of the system evolutibp may be far from the
Maxwell-Boltzmann distribution. It may be taken from other
* Author to whom correspondence should be addressed. studies(e.g., numerical simulationsut it cannot be deter-

1063-651X/98/55)/62102)/$15.00 57 6210 © 1998 The American Physical Society



57 COMMENTS 6211

mined in the framework of the version of BGK method cho- Sincen andu are constants, the continuity and momentum
sen. (i) It is not clear whether the principle of maximum equations are identically satisfied. Equatidbs-(4) yield an
information entropy can be used for systems of inelasticallyequation for the evolution of the granular kinetic eneEgy
colliding granules. At any rate, this is a matter of a separate
investigation, which the authors did not perform. dE 232

Given all the difficulties and shortcomings of the BGK gt = NoETK(FF)
methods in application to granular systems, reliable results
can be obtained only on the basis of a more elaborate kinetic
model which is free from the abowa hochypotheses. This
is the Boltzmann equation, which in fact serves an underlay-
ing basis of BGK models for conservative gases. For a parwhereinF is the solution of the following integrodifferential
ticular case of a dilute granular gas of inelastic smoothequation
spheres this equation may be written in the fd&h

m(1l—e?
= —ng?E3? % J’ d3V1d3V2F1F2V§1’ (6)

af(vq,b) 3

K(EF)| vz I
=X fvie), (1) Rz

—- | =J(F,F,Vy,e), 7

1 dvf) ( 1,€) (7)
andK(F,F) is defined in Eq(6).

J(f,f,vl,e)=J d3v,d%k(k-v;) O (k- Vvyy) Equationg6), (7), and(2) constitute the main result of the
hydrodynamic model applied to a spatially homogeneous

1 system. The system of equatio(®, (7), and(2) is closed

2 f(vi,Of(v3,)—f(v,)f(vo,t)[,  (2)  (does not require a choice of any parameters or functions

free fromad hochypotheses and much simpler than the Bolt-

whereo is the sphere diametef(v,,t) is the velocity distri- Zmann equatioril). Equation(6) describing the kinetic en-

bution function,d is the Heaviside functiork is a unit vector ~ €rdy evolution predicts the power law long time decayEof

pointing from the center of the sphere 2 to the center of thdn the spatially homogeneous café] i.e., Ext~2. Full so-

sphere 1, an&,;=V,—V,. Here double printed values de- lution for E requires determination d¢(F,F) from Eq.(7),

note precollisional velocities of the two sphefé€§: which may be done by different methods. In particular we
solved this problem by expanding functidhn in series of

Sonine polynomial$3], and showed thdE is close to Max-
wellian for all e at least for moderate values ®. More
recently, the latter result was confirmed numericéflj Esi-
According to the main idea of the Champan-Enskog methodpov and Poesch¢lF] showed that, for larg®, the function
the distribution function may depend on time only throughF decays exponentially.
five hydrodynamic values, i.e., the particle number density In conclusion, we will note that by using a less accurate
n, the average velocity, and the kinetic energ¥. The  but simpler model, Brey, Moreno, and Duffy] were able to
solution of the homogeneous problefig—(3) may be found recover the existence of additional components in the
in the form[2] kinetic-energy flux, stemming from the density gradients and
nonconservative nature of the system in agreement with the
results in our paperi,3]. These components are relevant in
studying the granular system stability. Another issue that
may be relevant and not treated in REf] is the rate of
ViE(Vi—U)/\/ﬁ. i=12 (4) approach of the so!ution of the Boltzmann-Enskog quation
to the hydrodynamic solution. We have shojj that this
wherem is the particle mass. Normalization conditions for time rate is not exponentially fast, but has a slower power
function F are law t dependence. Foe sufficiently close to unity, this
power is shown to be negative. In a more general case of

X

Y l+e Y l+e
Vl:Vl+ X (V21' k)k,VZIVZ_ ? (V21' k)k (3)

f(vi 1) Fi, Fi=F(Ve),

~ (EIm)¥?

arbitrary 0<e<1, this may not be true and needs a separate
f d3VlF1=%f d*ViViF =1, ®) investig);ltion. / P
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