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Comments are short papers which criticize or correct papers of other authors previously published in thePhysical Review. Each
Comment should state clearly to which paper it refers and must be accompanied by a brief abstract. The same publication sc
for regular articles is followed, and page proofs are sent to authors.

Comment on ‘‘Model kinetic equation for low-density granular flow’’

A. Goldshtein and M. Shapiro*
Laboratory of Transport Processes in Porous Materials, Faculty of Mechanical Engineering, Technion-Israel Institute of Techno

Haifa 32000, Israel
~Received 2 December 1996!

Hydrodynamic equations for a system of inelastically colliding granules were systematically derived on the
basis of the Boltzmann equation by the Chapman-Enskog method.@A. I. Goldshtein, V. N. Poturaev, and I. A.
Shulyak, Fluid Dyn.~USSR! 25, 305 ~1990!; A. Goldshtein and M. Shapiro, J. Fluid Mech.282, 75 ~1995!#.
We feel that this problem has recently been incorrectly treated by J. J. Brey, F. Moreno, and James W. Dufty
@Phys. Rev. E54, 445~1996!# using the Bhatnagar-Gross-Krook approximation of the kinetic equation. In this
Comment, the inconsistency of their approach is analyzed, and possible adequate methods for stability analyses
of the homogeneous state of inelastic granules are delineated.@S1063-651X~98!10804-8#
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n a recent paper@1# Brey, Moreno, and Duffy used a
variant of Bhatnagar-Gross-Krook~BGK! kinetic model
equation to investigate the time evolution of a low-dens
granular gas composed of inelastically colliding particl
The kinetic equation was solved by a modification of t
Chapman-Enskog method by expanding about a local ho
geneous state in powers of gradients of the hydrodyna
properties. The velocity distribution function describing t
hydrodynamics of the homogeneous state was found to
cay as a power function for large velocities, which is
contrast with the Maxwellian distribution prevailing for mo
lecular fluids. As a consequence of this algebraic decay,
velocity moments of degreek>2/(12e2), with e being the
restitution coefficient, diverge. Furthermore, the energy b
ance equation was found to contain, in addition to a s
term describing the energy loss in collisions, a contribut
to the heat flux, which is proportional to the gradient of t
granular gas number density.

Part of the above results were obtained earlier@2,3# for a
more elaborate collisional model, a wider range of granu
gas density and a more general kinetic equation of
Boltzmann-Enskog type. This equation, derived for a sys
of inelastic rough spheres, was treated by the Chapm
Enskog method to derive the pertinent hydrodynamic eq
tions. As a result, the sink terms were calculated and
additional terms contributing to the heat flux were reveal
which are proportional to grad lnn and grad lnDP, with n
andDP being the particle number density and gas press
correction due to collisional momentum transfer in den
gases, respectively. We also showed@2,3# that a dense granu
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lar gas composed of rough particles is characterized by
additional sink and energy loss terms arising from the
compression~or expansion!.

In particular, our analyses of the homogeneous hydro
namic state of inelastic smooth granules, performed on
basis of the Boltzmann-Enskog kinetic equation, showed@3#
that the granular velocity distribution function isclose to the
Maxwellian. This basically opposes the results obtained
Brey, Moreno, and Duffy@1#. The first nontrivial coefficient
in the expansion of the velocity distribution function in seri
of Sonine polynomials is small@,0.04~see Ref.@3#!# for all
e. This coefficient produces the fourth order velocity m
ment, which does not exist according to the study of Ref.@1#
for e2, 1

2 . The latter contradiction is clearly attributed to th
apparent deficiency of their variant of the BGK equation.
contains the two unknown quantities: collisional frequencz
and a functionf 0 , determining a reference state. These qu
tities appear in the linearized collisional term, and no rat
nale exist for choosing them during the solution.

For conservative~molecular! gases choice of the colli
sional term in the BGK kinetic equation is dictated by t
following principles:~i! molecules tend to reach the equilib
rium state, which is characterized by the Maxwe
Boltzmann distribution@4#, and ~ii ! the information entropy
tends to a maximum value@4#. The above principles, used i
Ref. @1# are generally not valid for a gas composed of inel
tic (e,1) particles due to the nonconservative nature
such granular systems.~i! There is no equilibrium state fo
granular systems; that is, the distribution function alwa
remainst-dependent and so doesf 0 . Even in the hydrody-
namic stage of the system evolutionf 0 may be far from the
Maxwell-Boltzmann distribution. It may be taken from oth
studies~e.g., numerical simulations! but it cannot be deter-
6210 © 1998 The American Physical Society
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57 6211COMMENTS
mined in the framework of the version of BGK method ch
sen. ~ii ! It is not clear whether the principle of maximum
information entropy can be used for systems of inelastic
colliding granules. At any rate, this is a matter of a separ
investigation, which the authors did not perform.

Given all the difficulties and shortcomings of the BG
methods in application to granular systems, reliable res
can be obtained only on the basis of a more elaborate kin
model which is free from the abovead hochypotheses. This
is the Boltzmann equation, which in fact serves an under
ing basis of BGK models for conservative gases. For a p
ticular case of a dilute granular gas of inelastic smo
spheres this equation may be written in the form@5#:

] f ~v1 ,t !

]t
5s2J~ f , f ,v1,e!, ~1!

J~ f , f ,v1,e!5E d3n2d2k~k•v1!Q~k•v21!

3F 1

e2 f ~v19 ,t ! f ~v29 ,t !2 f ~v1,t ! f ~v2 ,t !G , ~2!

wheres is the sphere diameter,f (v1,t) is the velocity distri-
bution function,u is the Heaviside function,k is a unit vector
pointing from the center of the sphere 2 to the center of
sphere 1, andv21[v22v1 . Here double printed values de
note precollisional velocities of the two spheres@6#:

v195v11
11e

2e
~v21•k!k,v295v22

11e

2e
~v21•k!k. ~3!

According to the main idea of the Champan-Enskog meth
the distribution function may depend on time only throu
five hydrodynamic values, i.e., the particle number den
n, the average velocityu, and the kinetic energyE. The
solution of the homogeneous problems~1!–~3! may be found
in the form @2#

f ~vi ,t !5
n

~E/m!3/2
Fi , Fi[F~Vi

2,e!,

V i[~vi2u!/AE/m, i 51,2 ~4!

wherem is the particle mass. Normalization conditions f
function F are

E d3V1F15 1
2 E d3V1V1

2F151. ~5!
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Sincen and u are constants, the continuity and momentu
equations are identically satisfied. Equations~1!–~4! yield an
equation for the evolution of the granular kinetic energyE,

dE

dt
5ns2E3/2K~F,F !

[2ns2E3/2
p~12e2!

16 E d3V1d3V2F1F2V21
3 , ~6!

whereinF is the solution of the following integrodifferentia
equation

2K~F,F !S 3

2
F11V1

2 dF1

dV1
2D 5J~F,F,V1,e!, ~7!

andK(F,F) is defined in Eq.~6!.
Equations~6!, ~7!, and~2! constitute the main result of th

hydrodynamic model applied to a spatially homogeneo
system. The system of equations~6!, ~7!, and ~2! is closed
~does not require a choice of any parameters or functio!,
free fromad hochypotheses and much simpler than the Bo
zmann equation~1!. Equation~6! describing the kinetic en-
ergy evolution predicts the power law long time decay ofE
in the spatially homogeneous case,@6# i.e., E}t22. Full so-
lution for E requires determination ofK(F,F) from Eq. ~7!,
which may be done by different methods. In particular w
solved this problem by expanding functionF in series of
Sonine polynomials@3#, and showed thatF is close to Max-
wellian for all e at least for moderate values ofV. More
recently, the latter result was confirmed numerically@7#. Esi-
pov and Poeschel@7# showed that, for largeV, the function
F decays exponentially.

In conclusion, we will note that by using a less accura
but simpler model, Brey, Moreno, and Duffy@1# were able to
recover the existence of additional components in
kinetic-energy flux, stemming from the density gradients a
nonconservative nature of the system in agreement with
results in our papers@2,3#. These components are relevant
studying the granular system stability. Another issue t
may be relevant and not treated in Ref.@1# is the rate of
approach of the solution of the Boltzmann-Enskog equat
to the hydrodynamic solution. We have shown@3# that this
time rate is not exponentially fast, but has a slower pow
law t dependence. Fore sufficiently close to unity, this
power is shown to be negative. In a more general case
arbitrary 0,e,1, this may not be true and needs a separ
investigation.
I.
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